Funktionen
Prof. Dr. Björn Maronga
Prof. Dr. Björn Maronga
Telefon
Fax
E-Mail
Adresse
Herrenhäuser Straße 2
30419 Hannover
30419 Hannover
Gebäude
Raum
Prof. Dr. Björn Maronga
Prüfungsausschussvorsitz
Prüfungsausschuss Meteorologie
BAföG-Beauftragte
BAföG-Beauftragte/-r Meteorologie
Praktikumsbeauftragte
Praktikumsbeauftragte/-r Meteorologie
Vertretung der Professorinnen und Professoren
Auswahlkommission Meterologie
Professorinnen und Professoren
Grenzschichtmeteorologie
Institut für Meteorologie und Klimatologie
Professorinnen und Professoren
AG Grenzschichtmeteorologie
Publikationsliste
Journale
-
(2023): Crowdsourcing air temperature data for the evaluation of the urban microscale model PALM – a case study in central Europe, PLOS Clim 2(8): e0000197
DOI: 10.1371/journal.pclm.0000197 -
(2022): Can area-wide building retrofitting affect the urban microclimate? An LES study for Berlin, Germany, J. Appl. Met. Clim., 61, 800–817 Weitere Informationen
DOI: 10.1175/JAMC-D-21-0216.1 -
(2022): Dispersive Fluxes within and over a Real Urban Canopy: A Large-eddy Simulation Study, Boundary-Layer Meteorol., 185, 93–128
DOI: 10.1007/s10546-022-00725-6 -
(2022): On the effect of nocturnal radiation fog on the development of the daytime convective boundary layer: A large-eddy simulation study, Quart. J. Roy. Met. Soc., in press
-
(2022): Importance of radiative transfer processes in urban climate models: a study based on the PALM 6.0 model system, Geosci. Model Dev., 15, 145–171
DOI: https://doi.org/10.5194/gmd-15-145-2022 -
(2021): A nested multi-scale system implemented in the Large-Eddy simulation model PALM model system 6.0, Geosci. Model Dev., 14, 3185–3214
DOI: 10.5194/gmd-14-3185-2021 -
(2021): Development of an atmospheric chemistry model coupled to the PALM model system 6.0: Implementation and first applications, Geosci. Model Dev., 14, 1171–1193
DOI: 10.5194/gmd-14-1171-2021 -
(2021): Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments, Geosci. Model Dev., 14, 3317–3333
DOI: 10.5194/gmd-14-3317-2021 -
(2021): Modeling of land–surface interactions in the PALM model system 6.0: land surface model description, first evaluation, and sensitivity to model parameters, Geosci. Model Dev., 14, 5307–5329
DOI: 10.5194/gmd-14-5307-2021 -
(2021): An Investigation of the Grid Sensitivity in Large-Eddy Simulations of the Stable Boundary Layer, Boundary-Layer Meteorol.
DOI: 10.1007/s10546-021-00656-8 -
(2021): Sensitivity analysis of the PALM model system 6.0 in the urban environment, Geosci. Model Dev., 14, 4443–4464
DOI: 10.5194/gmd-14-4443-2021 -
(2021): Demistify: an LES and SCM intercomparison of radiation fog, Atmos. Chem. Phys., accepted
-
(2020): Towards a better representation of fog microphysics in large-eddy simulations based on an embedded Lagrangian cloud model, Atmosphere, 11 (5), 466
DOI: 10.3390/atmos11050466 -
(2020): Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer Project (ISOBAR) — Unique fine-scale observations under stable and very stable conditions, Bull. Am. Meteor. Soc., 102(2), E218–E243
DOI: 10.1175/BAMS-D-19-0212.1 -
(2020): Addressing the Grid-size Sensitivity Issue in Large-eddy Simulations of Stable Boundary Layers, Boundary-Layer Meteorol., 178, 63–89
DOI: 10.1007/s10546-020-00558-1 -
(2020): Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335-1372
DOI: 10.5194/gmd-13-1335-2020 -
(2020): Intercomparison of Large‑Eddy Simulations of the Antarctic Boundary Layer for Very Stable Stratifcation, Boundary-Layer Meteorol. 176, 369–400
DOI: 10.1007/s10546-020-00539-4 -
(2020): An improved surface boundary condition for large eddy simulations based on Monin-Obukhov similarity theory: Evaluation and consequences for grid convergence in neutral and stable conditions, Boundary-Layer Meteorol., 174, 297-325
DOI: 10.1007/s10546-019-00485-w -
(2020): City-descriptive input data for urban climate models: Model requirements, data sources and challenges, Urban Climate, 31, 100536
DOI: 10.1016/j.uclim.2019.100536 -
(2020): Geospatial input data for the PALM model system 6.0: model requirements, data sources, and processing, Geosci. Model Dev., 13, 5833–5873
DOI: 10.5194/gmd-13-5833-2020 -
(2019): Remote sensing-supported generation of surface descriptors for a highly detailed urban climate model, 2019 Joint Urban Remote Sensing Event, 1-4
DOI: 10.1109/JURSE.2019.8809010 -
(2019): A generic gust definition and detection method based on wavelet-analysis, Advances in Science and Research, 16, 143-148
DOI: 10.5194/asr-16-143-2019 -
(2019): Implementation of the sectional aerosol module SALSA into the PALM model system 6.0: Model development and first evaluation, Geosci. Model Dev., 12, 1403-1422
DOI: 10.5194/gmd-12-1403-2019 -
(2019): Large-eddy simulation of radiation fog with comprehensive two-moment bulk microphysics: Impact of different aerosol activation and condensation parameterizations, Atmos. Chem. Phys., 19, 7165-7181
DOI: 10.5194/acp-19-7165-2019 -
(2019): Scaling the Decay of Turbulence Kinetic Energy in the Free-Convective Boundary Layer, Boundary-Layer Meteorol., 173, 79–97
DOI: 10.1007/s10546-019-00458-z -
(2019): Urban Climate Under Change [UC]² - A National Research Programme for Developing a Buildung-Resolving Atmospheric Model for Entire City Regions, Met. Zeit., Nr. 2, 28(2), 95-104
DOI: 10.1127/metz/2019/0913 -
(2019): Development of a new urban climate model based on the model PALM - Project overview, planned work, and first achievements , Met. Z., 28, 105-119
DOI: 10.1127/metz/2019/0909 -
(2018): Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer (ISOBAR) – The Hailuoto 2017 Campaign, Atmosphere, 9(7), 268
DOI: 10.3390/atmos9070268 -
(2017): On the formulation and universality of Monin-Obukhov similarity functions for mean gradients and standard deviations in the unstable surface layer: results from surface-layer resolving large-eddy simulations, J. Atmos. Sci., 74, 989-1010
DOI: 10.1175/JAS-D-16-0186.1 -
(2017): Key parameters for the life cycle of nocturnal radiation fog: a comprehensive large-eddy simulation study, Q. J. R. Meteorol. Soc., 143, 2463-2480
DOI: 10.1002/qj.3100 -
(2017): PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model, Geosci. Model Dev., 10, 3635-3659
DOI: 10.5194/gmd-10-3635-2017 -
(2016): Comparison of direct and spectral methods for evaluation of the temperature structure parameter in numerically simulated convective boundary layer flows, Mon. Wea. Rev., 144, 2205-2214
DOI: 10.1175/MWR-D-15-0390.1 -
(2016): On the discrepancy in simultaneous observations of the structure parameter of temperature using scintillometers and unmanned aircraft , Boundary-Layer Meteorol., 158, 257-283
DOI: 10.1007/s10546-015-0086-9 -
(2015): The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for Atmospheric and Oceanic Flows: Model Formulation, Recent Developments, and Future Perspectives, Geosci. Model Dev., 8, 2515-2551
DOI: 10.5194/gmd-8-2515-2015 -
(2014): On the effect of surface heat-flux heterogeneities on the mixed-layer top entrainment., Boundary-Layer Meteorol., 151, 531-556
DOI: 10.1007/s10546-014-9913-7 -
(2014): The effect of surface heterogeneity on the structure parameters of temperature and humidity - An LES case study for the LITFASS-2003 experiment, Boundary-Layer Meteorol., 153, 441–470
DOI: 10.1007/s10546-014-9955-x -
(2014): Monin-Obukhov similarity functions for the structure parameters of temperature and humidity in the unstable surface layer: results from high-resolution large-eddy simulations., J. Atmos. Sci., 71, 716-733
DOI: 10.1175/JAS-D-13-0135.1 -
(2013): Large-Eddy Simulations of Surface Heterogeneity Effects on the Convective Boundary Layer During the LITFASS-2003 Experiment, Boundary-Layer Meteorol., 148, 309-331
DOI: 10.1007/s10546-012-9748-z -
(2013): Derivation of structure parameters of temperature and humidity in the convective boundary layer from large-eddy simulations and implications for the interpretation of scintillometer observations, Boundary-Layer Meteorology, 148, 1-30
DOI: 10.1007/s10546-013-9801-6 -
(2012): Towards a validation of scintillometer measurements: The LITFASS-2009 experiment., Boundary-Layer Meteorol., 144, 83-112
DOI: 10.1007/s10546-012-9715-8