Positions
Prof. Dr. Björn Maronga


Prof. Dr. Björn Maronga
Phone
Fax
Address
Herrenhäuser Straße 2
30419 Hannover
30419 Hannover
Building
Room


Prof. Dr. Björn Maronga
Chairperson of the Examination Board
Examination Board, Meteorology
BAFÖG Officers
BAföG Officer, Meteorology
Placements Officers
Internship Coordinator, Meteorology
Representatives for professors
Admissions Board, Metrology
Professors
Grenzschichtmeteorologie
Institute of Meteorology and Climatology
Professors
Boundary-Layer Meteorology
Publikationsliste
Journale
-
(2023): Crowdsourcing air temperature data for the evaluation of the urban microscale model PALM – a case study in central Europe, PLOS Clim 2(8): e0000197
DOI: 10.1371/journal.pclm.0000197 -
(2022): Can area-wide building retrofitting affect the urban microclimate? An LES study for Berlin, Germany, J. Appl. Met. Clim., 61, 800–817 More info
DOI: 10.1175/JAMC-D-21-0216.1 -
(2022): Dispersive Fluxes within and over a Real Urban Canopy: A Large-eddy Simulation Study, Boundary-Layer Meteorol., 185, 93–128
DOI: 10.1007/s10546-022-00725-6 -
(2022): On the effect of nocturnal radiation fog on the development of the daytime convective boundary layer: A large-eddy simulation study, Quart. J. Roy. Met. Soc., in press
-
(2022): Importance of radiative transfer processes in urban climate models: a study based on the PALM 6.0 model system, Geosci. Model Dev., 15, 145–171
DOI: https://doi.org/10.5194/gmd-15-145-2022 -
(2021): A nested multi-scale system implemented in the Large-Eddy simulation model PALM model system 6.0, Geosci. Model Dev., 14, 3185–3214
DOI: 10.5194/gmd-14-3185-2021 -
(2021): Development of an atmospheric chemistry model coupled to the PALM model system 6.0: Implementation and first applications, Geosci. Model Dev., 14, 1171–1193
DOI: 10.5194/gmd-14-1171-2021 -
(2021): Evaluation of the dynamic core of the PALM model system 6.0 in a neutrally stratified urban environment: comparison between LES and wind-tunnel experiments, Geosci. Model Dev., 14, 3317–3333
DOI: 10.5194/gmd-14-3317-2021 -
(2021): Modeling of land–surface interactions in the PALM model system 6.0: land surface model description, first evaluation, and sensitivity to model parameters, Geosci. Model Dev., 14, 5307–5329
DOI: 10.5194/gmd-14-5307-2021 -
(2021): An Investigation of the Grid Sensitivity in Large-Eddy Simulations of the Stable Boundary Layer, Boundary-Layer Meteorol.
DOI: 10.1007/s10546-021-00656-8 -
(2021): Sensitivity analysis of the PALM model system 6.0 in the urban environment, Geosci. Model Dev., 14, 4443–4464
DOI: 10.5194/gmd-14-4443-2021 -
(2021): Demistify: an LES and SCM intercomparison of radiation fog, Atmos. Chem. Phys., accepted
-
(2020): Towards a better representation of fog microphysics in large-eddy simulations based on an embedded Lagrangian cloud model, Atmosphere, 11 (5), 466
DOI: 10.3390/atmos11050466 -
(2020): Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer Project (ISOBAR) — Unique fine-scale observations under stable and very stable conditions, Bull. Am. Meteor. Soc., 102(2), E218–E243
DOI: 10.1175/BAMS-D-19-0212.1 -
(2020): Addressing the Grid-size Sensitivity Issue in Large-eddy Simulations of Stable Boundary Layers, Boundary-Layer Meteorol., 178, 63–89
DOI: 10.1007/s10546-020-00558-1 -
(2020): Overview of the PALM model system 6.0, Geosci. Model Dev., 13, 1335-1372
DOI: 10.5194/gmd-13-1335-2020 -
(2020): Intercomparison of Large‑Eddy Simulations of the Antarctic Boundary Layer for Very Stable Stratifcation, Boundary-Layer Meteorol. 176, 369–400
DOI: 10.1007/s10546-020-00539-4 -
(2020): An improved surface boundary condition for large eddy simulations based on Monin-Obukhov similarity theory: Evaluation and consequences for grid convergence in neutral and stable conditions, Boundary-Layer Meteorol., 174, 297-325
DOI: 10.1007/s10546-019-00485-w -
(2020): City-descriptive input data for urban climate models: Model requirements, data sources and challenges, Urban Climate, 31, 100536
DOI: 10.1016/j.uclim.2019.100536 -
(2020): Geospatial input data for the PALM model system 6.0: model requirements, data sources, and processing, Geosci. Model Dev., 13, 5833–5873
DOI: 10.5194/gmd-13-5833-2020 -
(2019): Remote sensing-supported generation of surface descriptors for a highly detailed urban climate model, 2019 Joint Urban Remote Sensing Event, 1-4
DOI: 10.1109/JURSE.2019.8809010 -
(2019): A generic gust definition and detection method based on wavelet-analysis, Advances in Science and Research, 16, 143-148
DOI: 10.5194/asr-16-143-2019 -
(2019): Implementation of the sectional aerosol module SALSA into the PALM model system 6.0: Model development and first evaluation, Geosci. Model Dev., 12, 1403-1422
DOI: 10.5194/gmd-12-1403-2019 -
(2019): Large-eddy simulation of radiation fog with comprehensive two-moment bulk microphysics: Impact of different aerosol activation and condensation parameterizations, Atmos. Chem. Phys., 19, 7165-7181
DOI: 10.5194/acp-19-7165-2019 -
(2019): Scaling the Decay of Turbulence Kinetic Energy in the Free-Convective Boundary Layer, Boundary-Layer Meteorol., 173, 79–97
DOI: 10.1007/s10546-019-00458-z -
(2019): Urban Climate Under Change [UC]² - A National Research Programme for Developing a Buildung-Resolving Atmospheric Model for Entire City Regions, Met. Zeit., Nr. 2, 28(2), 95-104
DOI: 10.1127/metz/2019/0913 -
(2019): Development of a new urban climate model based on the model PALM - Project overview, planned work, and first achievements , Met. Z., 28, 105-119
DOI: 10.1127/metz/2019/0909 -
(2018): Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer (ISOBAR) – The Hailuoto 2017 Campaign, Atmosphere, 9(7), 268
DOI: 10.3390/atmos9070268 -
(2017): On the formulation and universality of Monin-Obukhov similarity functions for mean gradients and standard deviations in the unstable surface layer: results from surface-layer resolving large-eddy simulations, J. Atmos. Sci., 74, 989-1010
DOI: 10.1175/JAS-D-16-0186.1 -
(2017): Key parameters for the life cycle of nocturnal radiation fog: a comprehensive large-eddy simulation study, Q. J. R. Meteorol. Soc., 143, 2463-2480
DOI: 10.1002/qj.3100 -
(2017): PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model, Geosci. Model Dev., 10, 3635-3659
DOI: 10.5194/gmd-10-3635-2017 -
(2016): Comparison of direct and spectral methods for evaluation of the temperature structure parameter in numerically simulated convective boundary layer flows, Mon. Wea. Rev., 144, 2205-2214
DOI: 10.1175/MWR-D-15-0390.1 -
(2016): On the discrepancy in simultaneous observations of the structure parameter of temperature using scintillometers and unmanned aircraft , Boundary-Layer Meteorol., 158, 257-283
DOI: 10.1007/s10546-015-0086-9 -
(2015): The Parallelized Large-Eddy Simulation Model (PALM) version 4.0 for Atmospheric and Oceanic Flows: Model Formulation, Recent Developments, and Future Perspectives, Geosci. Model Dev., 8, 2515-2551
DOI: 10.5194/gmd-8-2515-2015 -
(2014): On the effect of surface heat-flux heterogeneities on the mixed-layer top entrainment., Boundary-Layer Meteorol., 151, 531-556
DOI: 10.1007/s10546-014-9913-7 -
(2014): The effect of surface heterogeneity on the structure parameters of temperature and humidity - An LES case study for the LITFASS-2003 experiment, Boundary-Layer Meteorol., 153, 441–470
DOI: 10.1007/s10546-014-9955-x -
(2014): Monin-Obukhov similarity functions for the structure parameters of temperature and humidity in the unstable surface layer: results from high-resolution large-eddy simulations., J. Atmos. Sci., 71, 716-733
DOI: 10.1175/JAS-D-13-0135.1 -
(2013): Large-Eddy Simulations of Surface Heterogeneity Effects on the Convective Boundary Layer During the LITFASS-2003 Experiment, Boundary-Layer Meteorol., 148, 309-331
DOI: 10.1007/s10546-012-9748-z -
(2013): Derivation of structure parameters of temperature and humidity in the convective boundary layer from large-eddy simulations and implications for the interpretation of scintillometer observations, Boundary-Layer Meteorology, 148, 1-30
DOI: 10.1007/s10546-013-9801-6 -
(2012): Towards a validation of scintillometer measurements: The LITFASS-2009 experiment., Boundary-Layer Meteorol., 144, 83-112
DOI: 10.1007/s10546-012-9715-8